Save Evaluation Reports

Save Evaluation Reports

Use the save_report method to generate evaluation result reports with multiple granularity levels.

Usage Example

Click the button below to run the example in Colab:

Open In Colab

Splitter:
  external_split:
    method: custom_data
    filepath:
      ori: benchmark://adult-income_ori
      control: benchmark://adult-income_control
    schema:
      ori: benchmark://adult-income_schema
      control: benchmark://adult-income_schema
Synthesizer:
  external_data:
    method: custom_data
    filepath: benchmark://adult-income_syn
    schema: benchmark://adult-income_schema
Evaluator:
  validity_check:
    method: sdmetrics-diagnosticreport
  fidelity_check:
    method: sdmetrics-qualityreport
  singling_out_risk:
    method: anonymeter-singlingout
    n_attacks: 400
    n_cols: 3
    max_attempts: 4000
  classification_utility:
    method: mlutility
    task_type: classification
    target: income
    random_state: 42
Reporter:
  save_report:
    method: save_report         # Required: Fixed as save_report
    granularity:                # Required: Specify report granularity levels
      - global                  # Overall summary statistics
      - columnwise              # Per-column analysis
      - details                 # Detailed breakdown
    # eval:                     # Optional: Target evaluation experiment names (default: all evaluations)
    # output: petsard           # Optional: Output filename prefix (default: petsard)
    # naming_strategy: traditional  # Optional: Filename naming strategy, traditional or compact (default: traditional)

Parameter Description

Required Parameters

ParameterTypeDescriptionExample
methodstringFixed as save_reportsave_report
granularitystring or listReport detail levelglobal or ["global", "columnwise"]

Optional Parameters

ParameterTypeDefaultDescriptionExample
evalstring or listAllTarget evaluation experiment nameseval1 or ["eval1", "eval2"]
outputstringpetsardOutput file name prefixevaluation_results
naming_strategystringtraditionalFilename naming strategycompact

Granularity Types

Different evaluation methods support different granularity levels:

  • global (Overall Summary Statistics): Provides dataset-level overall evaluation metrics
  • details (Detailed Breakdown): Provides complete evaluation details and additional metrics
  • columnwise (Per-Column Analysis): Provides detailed evaluation metrics for each column
  • pairwise (Column Pairwise Relationships): Analyzes correlations and associations between columns
  • tree (Hierarchical Tree Structure): Presents evaluation results in hierarchical relationships

Supported Evaluators

Evaluatorglobaldetailscolumnwisepairwisetree
mlutility---
anonymeter---
sdmetrics--
mpuccs--
describer--

Output Format

All reports will be saved in CSV format, following the naming strategy described on the main page.

CSV File Content

Report file column structures vary by granularity:

Global Granularity:

  • metric_name: Metric name
  • value: Metric value
  • category: Metric category

Columnwise Granularity:

  • column: Column name
  • metric_name: Metric name
  • value: Metric value

Pairwise Granularity:

  • column_1: First column
  • column_2: Second column
  • metric_name: Metric name
  • value: Metric value

Common Questions

Q: How to choose the appropriate granularity?

A: Choose based on analysis needs:

  • Quick Overview: Use global
  • Column-level Analysis: Use columnwise
  • Correlation Analysis: Use pairwise

Q: Can I generate all granularities at once?

A: Yes, list all required granularities in the granularity parameter:

Q: How to filter specific evaluation experiments?

A: Use the eval parameter to specify:

Reporter:
  save_specific:
    method: save_report
    granularity: global
    eval: my_evaluation  # Only process this evaluation

Q: What if report files are too large?

A: Consider:

  1. Select only needed granularities
  2. Use eval parameter to filter
  3. Generate reports in batches
  4. Use compression tools for output files

Notes

  • Granularity Matching: Granularity markers in data must match configuration
  • Memory Usage: details and tree granularities may produce larger files
  • Evaluation Order: Must execute Evaluator before generating reports
  • Naming Conflicts: Use different output prefixes to avoid file overwrites
  • Data Integrity: Ensure evaluation results contain required granularity information
  • Naming Strategy: See main page for detailed filename format descriptions